XAS Spectroscopy System
First laboratory XAS with low Z capabilities and microspot analysis

Key Advantages:

Synchrotron-like Performance in a Laboratory XAS System

X-ray absorption spectroscopy (XAS) generates the most publications of any synchrotron approach. Because of the technique’s popularity, XAS beamtime can be challenging to acquire, requiring in some cases lengthy proposal submission and evaluation periods. The competitive nature of oversubscribed beamlines mean that even highly meritorious projects rejected. Sigray developed the QuantumLeap products to make it easy to access synchrotron-like XAS performance within your own laboratory, making it possible to complete research otherwise not possible, including those involving many samples or complex in-situ experiments.

EXAFS spectrum of an iron foil compared to synchrotron data
Low Atomic Number (Z) Capabilities

The QuantumLeap-V210 is entirely enclosed within a vacuum enclosure capable of evacuated environments reaching 10^-5 Torr. The system also incorporates a load-lock chamber for exchanging samples without breaking vacuum. The vacuum environment enables XAS measurements at energies as low as 2.1 keV, thus providing analysis of light elements down to atomic numbers of Z=15 (phosphorus) and Z=16 (sulfur).

Components of the QuantumLeap-V210 is entirely enclosed within a vacuum chamber.
MicroXAS at a 100 µm spot size

The QuantumLeap-V210 uses a focusing x-ray optic to direct x-rays onto a small spot on the sample. The small spot size enables high resolution chemical microscopy, in which chemical information can be mapped with XANES and/or EXAFS across a heterogeneous sample. Additionally, the small spot size dramatically relaxes the difficulty of sample preparation. In comparison, large spot XAS systems with mm-scale spot sizes require a high degree of sample uniformity that can be challenging to achieve.

Patented QuantumLeap-V210 acquisition scheme. A focusing x-ray optic directs x-rays onto the sample. A downstream crystal separates the transmitted x-rays by wavelengths into different positions on the spatially resolving detector. The resulting “image” by the detector is the XAS spectrum.

System Features

  1. Patented high brightness x-ray source with multiple targets, enabling high throughput in the laboratory and acquisition of the full range of elements
  2. Capillary x-ray optics for achieving a small focal spot (100 µm diameter) at the sample
  3. Vacuum enclosure that achieves down to <10^-5 Torr for obtaining chemical information on low-Z elements
  4. Intuitive software for acquisition and analysis. Can output data in CVS files to be read by software such as Athena and Artemis
Patented Multi-Target Ultrahigh Brightness X-ray Source

The QuantumLeap’s x-ray source features a patented design in which multiple target materials are in optimal thermal contact with diamond, which has excellent thermal conductivity properties. The rapid cooling of diamond enables higher power loading on the x-ray source to produce an intense beams of x-rays. Another key feature of the x-ray source is its motorized x-ray multi-material target, which allows software selection between more than one x-ray target material. This is important for XAS acquisition because switching between target materials allows avoidance of the strong characteristic x-ray energies for a given material that would otherwise contaminate the results.

Achieving a smooth spectrum for XAS: Rh (blue) has characteristic x-ray lines around 2.5 to 3.2 keV, while W (orange) has characteristic energies in the 7 to 12 keV range. By selecting target materials, characteristic lines can be avoided so that a smooth spectrum of energies is acquired for a full range between 2 to 10 keV.
Mirror Lens: Capillary X-ray Optics

QuantumLeap-V210 is the only micro-XAS system commercially available. Sigray is considered the leading manufacturer of x-ray optics (the company is a key supplier to synchrotron groups around the world), and the QuantumLeap-V210’s design features x-ray optics that relay x-rays from the source to the sample with high efficiency and without chromatic aberrations. The small focused spot on the sample is advantageous for straightforward sample preparation and the ability to analyze heterogeneous samples at high resolution.

Two spatially different points (blue line and red squares) on a metavanadate (NH4VO3) were taken on the sample to confirm sample uniformity. Also shown are a reference vanadium foil (black dots from QuantumLeap, black line from synchrotron)
Vacuum Enclosure

QuantumLeap-V210 is entirely enclosed in large vacuum chamber capable of environments down to below 10^-5 Torr. The design is critical for enabling XAS of low atomic number elements such as phosphorus and sulfur. This capability is not available even at most synchrotron XAS beamlines due to the complexity of high vacuum instrumentation.


QuantumLeap features an intuitive GUI for acquiring data, including the capability to set up recipe-based scans for point-by-point mapping or for multiple samples (a sample holder for up to 16 samples of 3″ diameters is provided). Data can be output as CSV files that can be easily read into analytical software, including Athena and Artemis.

QuantumLeap software follows an intuitive workflow in which the element of interest is selected and suggested settings are loaded. Options such as exposure times and number of images are then input. The acquired spectrum is displayed in real time during collection.



Catalysts, which are used to speed up chemical reactions, are estimated to be used in 90% of all commercially produced chemical products and represent more than a $30B global market. They are used in a vast array of applications, spanning from polymers, food science, petroleum, energy processing, and fine chemicals. Synchrotron-based XAS has become the method of choice for developing novel catalysts and to link structural motifs with catalytic properties. QuantumLeap provides convenient in-laboratory access to such capabilities without requiring the time and expense of acquiring synchrotron beamtime.

Analysis of chemistry in a Co-Cu catalyst sample and measurement of a reference Co foil. Note high resolution features such as pre-edges can be clearly seen.
Batteries and Fuel Cells

There are a very large number of potential electrode hosts for Li+ being explored in lithium ion batteries (LIBs), including different material compositions and various structures (micro to nanosized). XAS is commonly used to characterize structural and electronic information of electrodes to obtain understanding of electrochemical mechanisms governing a given battery’s chemistry. Sigray’s QuantumLeap not only enables ex-situ determination of electrocatalyst chemistry, but is also designed with baffles and feedthroughs for optional in-situ cells to study changes in-operando. Furthermore, the vacuum enclosure of the QuantumLeap-V210 permits analysis of important new battery concepts such as high energy density Li-S batteries by providing access to sulfur chemistry.

XANES spectrum of a new versus aged lithium ion battery cathode, demonstrating chemical changes
Nanoparticles and Nanotubes

The electric, magnetic, and catalytic properties of nanoparticles differ strongly from the same materials in bulk phase. These properties depend on the nanoparticle’s size and shape. Nanoparticles of 1-5nm in size are difficult to characterize with ordinary laboratory techniques such as XRD and TEM. XAS provides information on the distance of atoms, average size of particles smaller than 2nm, and even shape.

Hematite and magnetite iron nanopowder XANES analysis

Technical Specifications of the QuantumLeap-V210

OverallEnergy Coverage2.1 to 10 keV
XAS AcquisitionTransmission mode
Energy Resolution0.7 eV in XANES
<10 eV in EXAFS
(Note that you can also use XANES mode to acquire high resolution EXAFS at 0.7 eV)
Beam PathEnclosed in vacuum
Focus at Sample100 μm diameter spot
SourceTypeSigray patented ultrahigh brightness sealed microfocus source
Target(s)W and Mo standard.
Others available upon request.
Power | Voltage300W | 20-50 kVp
X-ray OpticTypeSigray proprietary double paraboloidal x-ray mirror lens
Transmission Efficiency~80%
Magnification1:1 magnification
Interior CoatingPlatinum for increasing collection efficiency of optic.
Others available upon request (e.g. Iridium coating for analyzing Pt).
X-ray CrystalsTypeHAPG/HOPG
Ge (220) Single Crystal
Ge (400) Single Crystal
Fourth Crystal of Ge(111) provided if low energy (2.1 keV) operation is of interest
X-ray DetectorTypeSpatially resolving (pixelated detector)
DimensionsFootprint42" W x 95" H x 75" D
Additional CapabilitiesMultiple Sample HolderHolds up to 16 samples of ~3mm diameter each


Brochures and Specification Sheets

QuantumLeap-V210 and QuantumLeap-H2000 Brochure

QuantumLeap-V210 White Paper

QuantumLeap-H2000 White Paper
(note: H2000 is a different model; more information here)

Application Notes

XAS of Catalysts

XAS of Batteries

Contact Us

Interested in how the Sigray QuantumLeap™ will help your particular application? Trying to figure out which model better suits your needs?
Or trying to obtain a quotation or inquire about a complimentary demonstration of the systems on your particular research interest?
Please fill out the following inquiry form and we will get back to you within 1-2 business days.